GALOIS THEORY FINAL EXAM

November 8 2024

This exam is of **50 marks** and is **3 hours long**. Please **read all the questions carefully**. Please feel free to use whatever theorems you have learned in class after stating them clearly.

1. Using the Lindemann-Weierstrass theorem as proved in class show that if $\alpha_1, \ldots, \alpha_n$ are linearly independent algebraic numbers over \mathbb{Q} , then $e^{\alpha_1}, \ldots, e^{\alpha_n}$ are algebraically independent, that is, there is no f in $\mathbb{Q}[x_1, \ldots, x_n]$ such that $f(e^{\alpha_1}, \ldots, e^{\alpha_n}) = 0.$ (5)

2. Is $\sin(3/2)$ algebraic or transcendental? Justify your answer. (5)

- 3a. Compute the Galois group of $X^4 2$. (5)
- 3b. Determine all intermediate extensions. (5)

(5)

3c. If α is a root of $X^4 - 2$ is it constructible?

4. Let K/F be an infinite Galois extension with G = Gal(K/F). Show that if H is a subgroup then \overline{H} , the closure of H in the Krull topology is given by

$$\bar{H} = \bigcap_{N \in \mathcal{N}} HN$$

where \mathcal{N} is the set of subgroups of G such that N = Gal(K/E) with E/F finite Galois. (5)

5. Suppose F is a field containing the n^{th} roots of 1. Let $a \in F$. Show that $X^n - a$ is irreducible if and only if a is not an m^{th} power for any m > 1 such that m|n. (5)

6. Show that if K is the splitting field of a separable polynomial f then Gal(K/F) is a transitive subgroup of S_n - that is, if $i, j \in \{1, ..., n\}$ then there exists $\sigma \in Gal(K/F)$ such that $\sigma(\alpha_i) = \alpha_j$, where $\alpha_1, ..., \alpha_n$ are the roots of f. (5)

7. Consider the polynomial

 $f(x) = x^3 + 5x + 1$

- Is it irreducible? Justify your answer.
 What is its discriminant?
 (3)
- What is the Galois group of the splitting field of f? (4)

November 8 2024